Is Phenylbutazone a Genotoxic Carcinogen? A Weight-of-Evidence Assessment

Author:

Combes Robert D.1

Affiliation:

1. Independent Consultant, Norwich, UK

Abstract

Published in silico, in vitro, in vivo laboratory animal and human data, together with information on biotransformation and data from structure-activity analyses with two decision-tree systems (ACToR and Toxtree), have been used in a weight-of-evidence (WoE) assessment to determine whether phenylbutazone (PBZ) is a genotoxic or a non-genotoxic carcinogen. This was undertaken to facilitate the risk assessment of human exposure to this veterinary drug via the consumption of horsemeat from treated animals. Despite problems with data interpretation at all tiers of the database, it was concluded that PBZ behaves like a genotoxic carcinogen with a threshold dose. This conclusion is based mainly on the results of a definitive rodent bioassay, and on the following observations: a) that PBZ has weak in vitro activity only at high concentrations in some genotoxicity assays, accompanied by high levels of cytotoxicity; b) that it (and a major metabolite) is able to cause sister chromatid exchanges in vivo in rodents; and c) that it can induce cytogenetic effects in vivo in humans. It also takes into account the known and predicted activities of the parent drug, some of its metabolites and two structural analogues, and, importantly, several of the drug's other biochemical effects that are unrelated to toxicity. However, this conclusion is not fully supported by all the evidence, and much of the information is based on old papers. Therefore, more studies are required to establish whether the concentration thresholds seen in vitro would translate to dose thresholds for carcinogenicity, such that a safe dose-level could be defined for the purposes of assessing risk. It was disappointing that a WoE approach to evaluating all of the available hazard data, as is increasingly being advocated to improve the hazard identification paradigm, was unable to provide definitive answers in this case, particularly in view of the large numbers of animals that had been used to provide much of the information.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference49 articles.

1. FDA (2004). Challenge and Opportunity on the Critical Path Toward New Medical Products, 31 pp. Silver Spring, MD, USA: Food and Drug Administration.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3