Multiomics Approach Reveal Novel Insights in FUS Driven Juvenile Amyotrophic Lateral Sclerosis: A Family Quartet Analysis

Author:

Verma Sagar12,Khurana Shiffali1,Gourie-Devi Mandaville3,Anand Ish3,Vats Yuvraj1,Singh Arpita4,Jothiramajayam Manivannan4,Kshetrapal Pallavi4,Sharma Ankkita3,Wajid Saima2,Ganguly Nirmal Kumar1,Chakraborti Pradip5,Taneja Vibha1ORCID

Affiliation:

1. Department of Research, Sir Ganga Ram Hospital, Delhi, India

2. Department of Biotechnology, Jamia Hamdard, Delhi, India

3. Department of Neurology, Sir Ganga Ram Hospital, Delhi, India

4. Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, Haryana, India

5. Department of Biotechnology, Panjab University, Chandigarh, India

Abstract

Background Juvenile amyotrophic lateral sclerosis (JALS) is a rare and severe form of motor neuron disease characterized by progressive loss of upper and lower motor neurons with an early onset (<25 years). Purpose Due to complex etiology and clinical heterogeneity, it is indispensable to unravel molecular mechanisms underlying JALS pathology. The study aimed to identify disease-specific signatures in a 14-years-old sporadic JALS patient. Methods Genomic, transcriptomic, and metabolomic analysis of proband and first-degree relatives (FDR). Results Exome sequencing identified a novel de novo frameshift variation (c.1465dupG: p.D490Gfs*26) in the fused in sarcoma (FUS) gene in proband. Interestingly, rare and potentially deleterious, disease-modifying variations in DDHD domain containing 1 (DDHD1) and fibrillin 2 (FBN2) were observed. Differentially expressed genes (DGEs) enriched in neuromuscular transmission and inflammatory response were identified by RNA-sequencing. In addition, alterations in purine and pyrimidine, vitamin B6, and sphingolipid metabolism reflect the involvement of inflammatory process in disease pathobiology. Conclusion Our findings suggest the involvement of multiple genetic factors coupled with hampered neuromuscular transmission and systemic inflammation in the onset and disease course of JALS.

Publisher

SAGE Publications

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3