Impact of Altered Breathing Patterns on Interaction of EEG and Heart Rate Variability

Author:

Sinha Meenakshi1ORCID,Sinha Ramanjan1,Ghate Jayshri1,Sarnik Gaurav2

Affiliation:

1. Department of Physiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India

2. Department of Medicine, JIPMER, Puducherry, India

Abstract

Background: Altered pattern of respiration has been shown to affect both the cardiac as well as cortical activity, which is the basis of central–autonomic dual interaction concept. On the other hand, effect of this association between altered breathing with slow cortical activity, that is, electroencephalography (EEG) theta waves (associated with learning and relaxed alertness) on the cardiac autonomic balance is largely unclear. Objective: The study aims to understand this interaction in response to altered respiratory patterns, for example, voluntary apnea, bradypnea, and tachypnea in terms of EEG and heart rate variability (HRV) correlates in normal healthy subjects. Methods: This study was conducted on 32 adult male subjects. EEG from F3, F4, P3, P4, O1 and O2 cortical areas and Lead II electrocardiography for HRV analysis was continuously recorded during aforesaid respiratory interventions. Power spectral analysis of EEG for theta waves and HRV measures, that is, RMSSD, pNN50, HF, LF, and LF/HF was calculated as % change taking resting value as 100%. Results: Apnea caused decrease in theta power, whereas an increase in LF/HF was observed in HRV. Bradypnea on the other hand, did not elicit any significant change in power of theta waves. However, decreased RMSSD and pNN50 were observed in HRV. Tachypnea led to increase in theta power with HRV depicting significantly decreased RMSSD and pNN50. Besides, significant correlation between EEG and HRV measures was found during tachypnea, which shifted toward posterior cortical sites as compared to resting condition. Conclusion: Various altered respiratory patterns caused either depressed parasympathetic or increased sympathetic output, whereas increased theta power along with posterior shift of correlation between theta power and HRV measures observed during post tachypnea might be due to involvement of global brain areas due to respiration-coupled neuronal activity. Thus, a definite link between cortical activity and autonomic output in relation to altered respiratory patterns may be suggested.

Publisher

SAGE Publications

Subject

General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heartbeat-evoked potentials following voluntary hyperventilation in epilepsy patients: respiratory influences on cardiac interoception;Frontiers in Neuroscience;2024-07-05

2. Influence of High-frequency Yoga Breathing (Kapalabhati) on States Changes in Gamma Oscillation;International Journal of Yoga;2024-05

3. Electroencephalographic Biomarkers of Relaxation: A Systematic Review and Meta-analysis;2024-03-28

4. Breathing exercises influence on psychoemotional state in different age groups;Scientific Journal of National Pedagogical Dragomanov University. Series 15. Scientific and pedagogical problems of physical culture (physical culture and sports);2024-03-18

5. Correlation between Respiratory Rate and EEG Signals Based on Wireless EEG Acquisition System;2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA);2024-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3