Verification of Source Activations in a 3D Brain Model Using ‘CLEVER’ Algorithm for Mental Arithmetic Conditions

Author:

Rambhia Jeenal1ORCID,Sutar Rajendra1

Affiliation:

1. Department of Electronics and Telecommunication Engineering, Sardar Patel Institute of Technology, Mumbai, Maharashtra, India

Abstract

Background: Living conditions are becoming challenging day by day. Mental stress on individuals is increasing due to multiple reasons. As mental stress is a major cause of mental illness, it must be detected at the earliest to prevent serious conditions such as depression and anxiety. Purpose: The focus of this study is to detect the exact location of the source which causes such damage. In this article, we analyse the mental conditions of subjects under a workload of performing mental arithmetic calculations for various frequency bands and plot the topography to understand the areas of active potentials. Methods: We propose a Novel Cluster Ensemble Verifier (CLEVER) algorithm, which combines two different techniques: clustering and source localisation. The proposed algorithm is highly efficient in identifying the exact location of the source. It is seen that the topographic plots of the independent component analysis (ICA), which has the maximum percentage of relative variance, correlates to the cluster generated. We are able to give the percentage-wise contribution of every component which is responsible for brain source activation with less time complexity. Results: Out of 72 subjects, in 67 subjects, 299 out of 433 components originate from the occipital and parietal areas of the brain with a maximum power of 43.5 µv 2 . As an example, the relative variance of one component is found to be contributing up to 74.03% to source activations. Clusters show similarity across the subjects in the parietal and occipital areas of the brain. The dataset used for experimentation is EEGMAT from Physionet’s repository. The computation time for the algorithms is 17.6 ± 3.2 minutes. Conclusion: Findings show that during mental arithmetic calculations, both occipital and parietal areas of the brain are involved. As the data is acquired by orally mentioning the mathematical problem, subjects tend to visualise the numbers while finding the solution, which is reflected in the occipital area of the brain. CLEVER algorithm verifies the origin of the activity in the occipital and parietal areas of the brain.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3