Effects of Prolonged Intermittent Fasting Model on Energy Metabolism and Mitochondrial Functions in Neurons

Author:

Pak Meltem1,Bozkurt Süleyman2,Pınarbaşı Arzu1,Öz Arslan Devrim2,Aksungar Fehime Benli1ORCID

Affiliation:

1. Department of Medical Biochemistry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey

2. Department of Biophysics, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey

Abstract

Background: Calorie restriction (CR) during daily nutrition has been shown to affect the prognosis of many chronic diseases such as metabolic syndrome, diabetes, and aging. As an alternative nutrition model, prolonged intermittent fasting (PF) in humans is defined by the absence of food for more than 12 h. In our previous human studies, CR and PF models were compared and it was concluded that the two models might have differences in signal transduction mechanisms. We have investigated the effects of these models on neurons at the molecular level in this study. Methods: Neurons (SH-SY5Y) were incubated with normal medium (N), calorie-restricted medium (CR), fasting medium (PF), and glucose-free medium (G0) for 16 h. Simultaneously, ketone (beta-hydroxybutyrate; bOHB) was added to other experiment flasks containing the same media. Concentrations of lactate, lactate dehydrogenase (LDH), bOHB, and glucose were measured to demonstrate the changes in the energy metabolism together with the mitochondrial functions of cells. Citrate synthase activity and flow cytometric mitochondrial functions were investigated. Results: At the end of incubations, lactate and LDH levels were decreased and mitochondrial activity was increased in all ketone-added groups (P < .01) regardless of the glucose concentration in the environment. In the fasting model, these differences were more prominent. Conclusion: Our results demonstrated that neurons use ketones regardless of the amount of glucose, and bOHB-treated cells had positive changes in mitochondrial function. We conclude that the presence of bOHB might reverse neuron damage and that exogenous ketone treatment may be beneficial in the treatment of neurological diseases in the future.

Publisher

SAGE Publications

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3