Diving Injuries to the Inner Ear

Author:

Farmer Joseph C.1

Affiliation:

1. Durham, North Carolina

Abstract

Most of the previous literature concerning otologic problems in compressed gas environments has emphasized middle ear barotrauma. With recent increases in commercial, military, and sport diving to deeper depths, inner ear disturbances during these exposures have been noted more frequently. Studies of inner ear physiology and pathology during diving indicate that the causes and treatment of these problems differ depending upon the phase and type of diving. Humans exposed to simulated depths of up to 305 meters without barotrauma or decompression sickness develop transient, conductive hearing losses with no audiometric evidence of cochlear dysfunction. Transient vertigo and nystagmus during diving have been noted with caloric stimulation, resulting from the unequal entry of cold water into the external auditory canals, and with asymmetric middle ear pressure equilibration during ascent and descent (alternobaric vertigo). Equilibrium disturbances noted with nitrogen narcosis, oxygen toxicity, hypercarbia, or hypoxia appear primarily related to the effects of these conditions upon the central nervous system and not to specific vestibular end-organ dysfunction. Compression of humans in helium-oxygen at depths greater than 152.4 meters results in transient symptoms of tremor, dizziness, and nausea plus decrements in postural equilibrium and psychomotor performance, the high pressure nervous syndrome. Vestibular function studies during these conditions indicate that these problems are due to central dysfunction and not to vestibular end-organ dysfunction. Persistent inner ear injuries have been noted during several phases of diving: 1) Such injuries during compression (inner ear barotrauma) have been related to round window ruptures occurring with straining, or a Valsalva's maneuver during inadequate middle ear pressure equilibration. Divers who develop cochlear and/or vestibular symptoms during shallow diving in which decompression sickness is unlikely or during compression in deeper diving, should be placed on bed rest with head elevation and avoidance of maneuvers which result in increased cerebrospinal fluid and intralabyrinthine pressure. With no improvement in symptoms after 48 hours, exploratory tympanotomy and repair of a possible labyrinthine window fistula should be considered. Recompression therapy is contraindicated in these cases. 2) Vestibular end-organ injuries have been noted in three divers after sudden changes in inspired inert gases at a stable deep depth. They are postulated to result from transient intralabyrinthine osmotic pressure differences, or from bubble formations at labyrinthine tissue interfaces occurring with the counter-diffusion of the two dissolved inert gases at high partial pressures. Such injuries should be preventable by avoiding changes in inert gases at deep depths. 3) Inner ear injuries can be the major or only manifestation of decompression sickness. In a series of 23 such cases, a significant correlation exists between prompt recompression, relief of symptoms, and lack of residual deficits. The management of otologic decompression sickness is discussed. 4) Loud noise has been noted during helmet and chamber diving and has been associated with temporary threshold shifts in helmet divers. Appropriate damage risk criteria for noise exposure in compressed gas environments are needed, and potentially damaging noise exposures should be avoided.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Reference78 articles.

1. Smith AH: The Effects of High Atmospheric Pressure, Including the Caisson Disease. Brooklyn, NY, Eagle Print, 1873, pp 1–53

2. AUDITORY VERTIGO CAUSED BY WORKING IN COMPRESSED AIR.

3. Compressed air illness or so-called caisson disease.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3