Comparison of Materials Used for 3D-Printing Temporal Bone Models to Simulate Surgical Dissection

Author:

McMillan Alexandra1ORCID,Kocharyan Armine1,Dekker Simone E.23,Kikano Elias George4ORCID,Garg Anisha2,Huang Victoria W.1,Moon Nicholas1,Cooke Malcolm5,Mowry Sarah E.1

Affiliation:

1. Department of Otolaryngology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA

2. Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA

3. Department of Medicine, Oregon Health & Science University, Portland, OR, USA

4. Department of Diagnostic Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA

5. Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland OH, USA

Abstract

Objective: To identify 3D-printed temporal bone (TB) models that most accurately recreate cortical mastoidectomy for use as a training tool by comparison of different materials and fabrication methods. Background: There are several different printers and materials available to create 3D-printed TB models for surgical planning and trainee education. Current reports using Acrylonitrile Butadiene Styrene (ABS) plastic generated via fused deposition modeling (FDM) have validated the capacity for 3D-printed models to serve as accurate surgical simulators. Here, a head-to-head comparison of models produced using different materials and fabrication processes was performed to identify superior models for application in skull base surgical training. Methods: High-resolution CT scans of normal TBs were used to create stereolithography files with image conversion for application in 3D-printing. The 3D-printed models were constructed using five different materials and four printers, including ABS printed on a MakerBot 2x printer, photopolymerizable polymer (Photo) using the Objet 350 Connex3 Printer, polycarbonate (PC) using the FDM-Fortus 400 mc printer, and two types of photocrosslinkable acrylic resin, white and blue (FLW and FLB, respectively), using the Formlabs Form 2 stereolithography printer. Printed TBs were drilled to assess the haptic experience and recreation of TB anatomy with comparison to the current paradigm of ABS. Results: Surgical drilling demonstrated that FLW models created by FDM as well as PC and Photo models generated using photopolymerization more closely recreated cortical mastoidectomy compared to ABS models. ABS generated odor and did not represent the anatomy accurately. Blue resin performed poorly in simulation, likely due to its dark color and translucent appearance. Conclusions: PC, Photo, and FLW models best replicated surgical drilling and anatomy as compared to ABS and FLB models. These prototypes are reliable simulators for surgical training.

Funder

case western reserve university

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3