Cochlear Prostheses: Stimulation-Induced Damage

Author:

Miller Josef M.1,Duckert Larry G.1,Pfingst Bryan E.1,Malone Mark A.1

Affiliation:

1. Seattle, Washington

Abstract

The effects of 4 weekly, three-hour exposures to continuous sinusoidal (1 kHz) electrical stimulation of the inner ear at various current levels were assessed in the chronically implanted guinea pig. With scala tympani stimulation, histopathological damage, including new bone growth, was observed for currents at and above 100 μA rms. No changes were observed in similarly implanted, but not stimulated cochleas. At equal current levels, less damage was found in subjects stimulated via electrodes placed on the round window and promontory, as compared to the scala tympani. Consistent reversible changes in threshold and suprathreshold features of the electrically evoked auditory brainstem response (EABR) were found. The magnitude of EABR change was directly related to exposure stimulus current level and to cochlear stimulation site. Suprathreshold features of the EABR were more sensitive to continuous stimulation exposures than threshold measures. Reversible EABR changes were found in the presence and absence of stimulation-induced histopathology.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3