Evoked Electromyographic Technique for Quantitative Assessment of the Innervation Status of Laryngeal Muscles

Author:

Zealear David L.,Swelstad Matthew R.,Fortune Scott,Rodriguez Ricardo J.,Chung Sung-Min,Valyi-Nagy Klara,Billante Mark J.,Billante Cheryl R.,Garren Kurt

Abstract

Objectives: The purpose of this study was to develop a minimally invasive, noninjurious evoked electromyographic technique that could accurately quantitate the level of innervation of laryngeal muscles with recurrent laryngeal nerve stimulation. Methods: A four-phase study was conducted in 24 canines, including 1) identification of the best stimulation-recording configuration, 2) statistical analysis of sensitivity and accuracy, 3) evaluation of safety, and 4) identification of the laryngeal muscle(s) that contribute to the evoked response. Results: The results demonstrated that an entirely noninvasive technique is not feasible. The stimulating cathode must be invasive to ensure discrete activation of the recurrent laryngeal nerve, whereas both recording electrodes should remain on the surface with one overlying the thyroid ala. This configuration proved to be highly accurate, with an error rate of only 6% to 7%, and with sensitivity sufficient to detect a signal in a nerve with fewer than 1% of the axons intact. There was no evidence of nerve injury in any animal over the course of 350 stimulus needle penetrations. By use of neuromuscular blockade to identify those muscles generating the surface response, the thyroarytenoid muscle was found to be the primary contributor, whereas the posterior cricoarytenoid muscle was uninvolved. Conclusions: This evoked electromyographic technique could provide quantitative information regarding the extent of muscle innervation during denervation and regeneration in case of laryngeal paralysis.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3