Laryngeal Cancer Screening During Flexible Video Laryngoscopy Using Large Computer Vision Models

Author:

Mamidi Ishwarya S.1,Dunham Michael E.1ORCID,Adkins Lacey K.1,McWhorter Andrew J.1,Fang Zhide2,Banh Britney T.3

Affiliation:

1. Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, USA

2. Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans LA, USA

3. Our Lady of the Lake Voice Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA, USA

Abstract

Objective: Develop an artificial intelligence assisted computer vision model to screen for laryngeal cancer during flexible laryngoscopy. Methods: Using laryngeal images and flexible laryngoscopy video recordings, we developed computer vision models to classify video frames for usability and cancer screening. A separate model segments any identified lesions on the frames. We used these computer vision models to construct a video stream annotation system. This system classifies findings from flexible laryngoscopy as “potentially malignant” or “probably benign” and segments any detected lesions. Additionally, the model provides a confidence level for each classification. Results: The overall accuracy of the flexible laryngoscopy cancer screening model was 92%. For cancer screening, it achieved a sensitivity of 97.7% and a specificity of 76.9%. The segmentation model attained an average precision at a 0.50 intersection-over-union of 0.595. The confidence level for positive screening results can assist clinicians in counseling patients regarding the findings. Conclusion: Our model is highly sensitive and adequately specific for laryngeal cancer screening. Segmentation helps endoscopists identify and describe potential lesions. Further optimization is required to enable the model’s deployment in clinical settings for real-time annotation during flexible laryngoscopy.

Funder

Louisiana State University Health Sciences Center Resident Research Grant

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3