Positron Emission Tomography of Auditory Sensation in Deaf Patients and Patients with Cochlear Implants

Author:

Ito Juichi1,Iwasaki Yasushi2,Sakakibara Junji2,Yonekura Yoshiharu2

Affiliation:

1. Otsu, Japan

2. Kyoto, Japan

Abstract

The present study investigated the function of the auditory cortices in severely hearing-impaired or deaf patients and cochlear implant patients before and after auditory stimulation. Positron emission computed tomography (PET), which can detect brain activity by providing quantitative measurements of the metabolic rates of oxygen and glucose, was used. In patients with residual hearing, the activity of the auditory cortex measured by PET was almost normal. Among the totally deaf patients, the longer the duration of deafness, the lower the brain activity in the auditory cortex measured by PET. Patients who had been deaf for a long period showed remarkably reduced metabolic rates in the auditory cortices. However, following implantation of the cochlear device, the metabolic activity returned to nearnormal levels. These findings suggest that activation of the speech comprehension mechanism of the higher brain system can be initiated by sound signals from the implant devices.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cochlear implantation in adults with auditory deprivation: What do we know about it?;American Journal of Otolaryngology;2020-03

2. Rhythm processing in cochlear implant−mediated music perception;Annals of the New York Academy of Sciences;2019-06-06

3. Visual Rhyme Judgment in Adults With Mild-to-Severe Hearing Loss;Frontiers in Psychology;2019-05-28

4. PET-imaging of brain plasticity after cochlear implantation;Hearing Research;2015-04

5. P300 in individuals with sensorineural hearing loss;Brazilian Journal of Otorhinolaryngology;2015-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3