Abstract
Structure and development of hair cells in vestibular sensory organs of the larval bullfrog were examined with scanning electron microscopy. The larval vestibular sensory epithelia resembled those of the adult frog. Based on morphology of the ciliary tufts, seven hair cell types were identified. One of them, the type A hair cell, appears to be the morphogenetic precursor of other hair cell types. The size of the stereocilia of type A hair cells is comparable to the surrounding microvilli. The distribution of immature type A hair cells suggests that the periphery of the sensory epithelia is the principal growth zone and the site of formation of new hair cells. However, a far greater number of type A hair cells were found in high frequency sensitive sensory organs (sacculus, amphibian and basilar papillae) than low frequency sensitive vestibular sensory structures (canal cristae, utriculus and lagena). This phenomenon may suggest that the time period required for the maturation of type A hair cells to their ultimate hair cell types in the low frequency sensitive vestibular organs is shorter than in the high frequency sensory structures. It is also possible that the low frequency sensitive vestibular organs may have completed their morphogenetic development in the early larval stages, while morphogenesis of hair cells in the high frequency sensory structures continues throughout the lifetime of a bullfrog.
Subject
General Medicine,Otorhinolaryngology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献