Effects of Removal of the Statoacoustic Ganglion Complex upon the Growing Otocyst

Author:

Van De Water Thomas R.1

Affiliation:

1. Bronx, New York

Abstract

An experiment was designed to answer the question as to whether or not the neural elements of the statoacoustic ganglion complex have a trophic effect upon the histodifferentiation of the sensory structures of the embryonic mouse inner ear anlage as it develops in vitro. The embryonic inner ear anlage with associated otic mesenchyme and statoacoustic ganglion complex was excised from 11, 12, and 13-day CBA/C57 mouse embryos. The inner ear explants of each gestational age group were further divided into two groups: the first group “A” (with) statoacoustic ganglion was explanted to the organ culture system without further surgical intervention; the second group “B” (without) statoacoustic ganglion underwent further surgical manipulation during which their statoacoustic ganglion complexes were dissected away prior to explantation to in vitro. The explanted embryonic inner ears were allowed to develop in organ culture until the equivalent of gestation day 21 in vivo was reached for each group; then all cultures were fixed and histologically processed and stained by a nerve fiber stain, in combination with a stain for glucoprotein membranes. Each specimen was code labeled and scored for histodifferentiation of sensory structures. Light microscopic observations confirmed that in group “A” cultures, statoacoustic ganglion neurons and their nerve fibers were present in association with the developed sensory structures; neither ganglion cell neurons nor their nerve fibers were found to be present in the sensory structures that developed in the group “B” organ culture specimens. Quantification revealed no consistent trend of greater occurrence of any sensory structure in the groups of explants analyzed. The presence of such a trend would have signified the probable existence of a trophic effect of the statoacoustic ganglion neural elements upon development of inner ear sensory structures in the group “A” explants of the 11, 12, and 13-day embryo inner ear organ culture specimens when compared to the aganglionic group “B” cultures. Microscopic comparison of the sensory structures and their sensory hair cells that developed in the organ cultures revealed no differences in the quality of the histodifferentiation of either group “A” or group “B” explants. A base to apex pattern of histodifferentiation of the organ of Corti sensory structures, which has been described to occur in vivo, was noted to occur in the in vitro developed cochlear ducts of all of the explanted inner ears without respect to whether neural elements were present (“A”) or absent (“B”) during development. It was concluded from the quantification of histodifferentiation data and the above observation on the pattern of differentiation of Corti's organ that no trophic effect of neural elements of the statoacoustic ganglion complex influencing the histodifferentiation of sensory structures of 11, 12, and 13-gestation day mouse embryo inner ear explants as they differentiate in vitro could be demonstrated.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Reference40 articles.

1. Ranvier L: Traite Technique d'Htstdlogie. Paris, F. Savy, 1875 (Footnote, pp 948–949).

2. THE PHYSIOLOGY OF INDIVIDUAL HAIR CELLS AND THEIR SYNAPSES

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Histopathologic Findings in Inner Ear Malformations;Inner Ear Malformations;2022

2. Extremely common radiographic finding of cochlear nerve deficiency among infants with prelingual single-sided deafness and its clinical implications;International Journal of Pediatric Otorhinolaryngology;2018-09

3. Embryology of Cochlear Nerve and Its Deficiency;Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency;2016-12-06

4. Overview;Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency;2016-12-06

5. The Spiral Ganglion in an Out-of-Body Experience: A Brief History of in Vitro Studies of the Spiral Ganglion;The Primary Auditory Neurons of the Mammalian Cochlea;2015-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3