Surgical Implantation and Biocompatibility of Central Nervous System Auditory Prostheses

Author:

Niparko John K.1,Altschuler Richard A.1,Wiler James A.1,Xue Xiaolin1,Anderson David J.1

Affiliation:

1. Ann Arbor, Michigan

Abstract

As part of a program to determine the feasibility of a CNS auditory prosthesis, the tissue reaction to electrodes chronically implanted in the cochlear nucleus (CN) of the guinea pig was examined. Varied open operative approaches and microelectrode designs were utilized. Silicon substrate thin film and platinum-iridium wire electrodes, tethered and untethered, were placed successfully in different divisions of the CN. Implantation through a posterior suboccipital approach was most successful. Histologic examinations demonstrated a glial cell proliferation confined to the area of the electrode track that never exceeded 15 μm in width. No neuronal loss or significant effect on cell morphology was seen, and reactive cells were absent. Electrode migration was apparent in a minority of animal preparations. Although potential problems were identified, our findings lend support to the feasibility of implanting a neuroprosthesis in the CN and have helped to establish methods for future studies of chronic intranuclear stimulation.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Printed Electronic Devices and Systems for Interfacing with Single Cells up to Organoids;Advanced Functional Materials;2023-12-13

2. The electrode—principles of the neural interface and materials;Essential Neuromodulation;2022

3. Electrodes and instrumentation for neurostimulation;Somatosensory Feedback for Neuroprosthetics;2021

4. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses;Advanced Biosystems;2020-10-20

5. Adam Politzer (1835-1920) and the cochlear nucleus;Journal of the History of the Neurosciences;2020-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3