Glottic Closing Force Versus Laryngeal Adductory Pressure in the Canine Larynx

Author:

Paniello Randal C.1,Bhatt Neel K.1

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA

Abstract

Introduction: The strength of glottic closure with recurrent laryngeal nerve (RLN) stimulation has been indirectly measured experimentally by determining the squeezing pressure on a balloon inserted between the vocal folds, termed laryngeal adductory pressure (LAP). In this study, we sought to measure glottic closing force (GCF) directly and compare these results to LAP measures obtained with identical stimulation parameters. Methods: In canines, a method for measuring GCF was developed in which a suture was looped through a lateral thyrotomy hole, around the vocal process and back, then attached to a force gauge. The RLN was maximally stimulated and GCF recorded. The LAP was then measured as previously described, using the same stimuli. This process was repeated at 9 stimulation frequencies in 10-Hz intervals from 20 to 100 Hz. The GCF and LAP were compared using Pearson’s correlation coefficient (PCC). Results: Both sides were measured in 16 dogs, resulting in 32 data sets. The LAP measures were obtained at all frequencies, while GCF was obtained in 246 of 288 (85.4%) attempts. The maximum GCF for each dog typically occurred at 80 to 100 Hz and averaged 0.287 ± 0.106 newtons. Plotting GCF versus LAP for each hemilaryngeal preparation, the mean PCC was 0.932 ± .042 (range, 0.802-0.987). The mean PCC did not differ between control (n = 26) and postoperative (n = 6) hemilarynges. Conclusion: This method for measuring GCF appears valid. The high Pearson’s correlation coefficient indicates strong covariance between GCF and LAP, demonstrating that they are both measures of the same physical property. The LAP is easier to perform and more consistently obtained.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3