Quasistatic response of a shear-thickening foam: Microstructure evolution and infrared thermography

Author:

Bhagavathula KB1ORCID,Parcon JS1,Azar A1,Ouellet S2,Satapathy S3,Dennison CR1,Hogan JD1

Affiliation:

1. Department of Mechanical Engineering, the University of Alberta, Edmonton, AB, Canada

2. Valcartier Research Centre, Defence Research and Development Canada, Quebec, QC, Canada

3. Soldier Protection Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA

Abstract

In this work, the authors study the thermo-mechanical response of a dilatant polymeric foam in quasistatic tension and compression, focusing on the links between microstructure, mechanical response, and associated temperature rises in these materials. The authors study these links for a commercially-available shear-thickening foam, named D3O LITE D. Samples were tested under quasi-static conditions for a strain rate of 0.1 s−1 in tension and compression. Micro X-ray computed tomography (XCT) was used to study the evolution of microstructure (pore size and wall thickness) as a function of strain and this was achieved by developing MATLAB-based programs to analyze these microstructural features. The foam specimens were loaded until failure which allowed for the investigation of the elastic, inelastic, and failure regimes. From the XCT images, pore stretching and cell wall tearing are observed in tension, and buckling and pore collapse are observed in compression. These mechanisms are studied in-situ using an infrared thermal camera which record temperature profiles, and temperature measurements are linked back to stress-strain, and temperature-strain responses. For this material, the tensile yield stress was 0.57 ± 0.10 MPa and the elastic modulus was 5.47 ± 0.10 MPa respectively, at a yield strain of 0.10 ± 0.04. At the time of failure, the average temperature of the specimen was found to increase by ∼3.00°C and a local temperature increase of ∼8.00°C was observed in the failure region. In compression, the elastic collapse stress and elastic modulus were found to be 0.130 ± 0.016 MPa and 2.5 ± 0.2 MPa, respectively. The temperature increase in compression at ∼0.83 strain was ∼0.65°C. These results represent some of the first mechanical properties on shear-thickening foams in the literature, and the discoveries on the linkages between the microstructure and the mechanical properties in this study are important for researchers in materials design and modelling.

Funder

Army Research Laboratory

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3