Effect of temperature on the mechanical behavior of pvc foams

Author:

Hoo Fatt Michelle S1ORCID,Vedire Anudeep R1,Pakala Akshay K1

Affiliation:

1. Department of Mechanical Engineering, The University of Akron, Akron, OH, USA

Abstract

Experiments were conducted to characterize the mechanical behavior of Divinycell PVC foams over a wide range of environmental temperatures, from −60 to +80°C. Transversely isotropic properties of the foams, including modulus, strength, and ductility, were found to vary with temperatures between the ductile-to-brittle transition temperature (−60 to −50°C) and just under the glass transition temperature (95 to 100°C). The elastic modulus and yield strength decreased linearly as the temperature increased from −60 to +80°C. Compressive strength also decreased steadily with increasing temperature over the entire temperature range. In contrast, tensile and shear strengths only showed a significant decrease in values as the temperature rose above 23°C (room temperature). Below 23°C, there was a minor change in tensile and shear strengths. Tensile and shear ductility decreased sharply as the temperature decreased from +80°C to −40°C and stabilized between −60 and −40°C, which is close to the ductile-to-brittle transition region. Fractography of the tensile and shear fracture surfaces confirmed brittle fracture at −60°C and ductile tearing at +60°C. Equations were derived to predict modulus, yield strength, compressive, tensile and shear strengths, and ductility at any temperature in terms of room temperature values.

Funder

Office of Naval Research

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3