Compression behavior of soft PVC foams obtained by cardanol-derived plasticizer

Author:

Greco Antonio1ORCID,Ferrari Francesca1,Maffezzoli Alfonso1

Affiliation:

1. Department of Engineering for Innovation, University of Salento, Lecce, Italy

Abstract

This work is aimed to study the application of a bio-based plasticizer, obtained by acetylation and epoxydation of cardanol, for the production of soft PVC foams. The use of epoxidized cardanol acetate allowed obtaining a more efficient foaming of soft PVC compared to phthalate plasticizer bis(2-ethylhexyl) phthalate (DEHP), mainly due to the lower viscosity attained in the decomposition range of azodicarbonamide (AZDC). As a consequence, the foams produced by epoxidized cardanol acetate showed a lower density compared to those produced with DEHP. The lower density yielded lower values of compressive modulus. However, the modulus was shown to be not only dependent on the density, but also showed a direct dependence on the type of plasticizer used, in addition to processing temperature and AZDC content. As a consequence, the specific compressive modulus also showed a direct dependence on the type of plasticizer, processing temperature and AZDC content. Such dependence was explained by considering different cellular morphologies developed during foaming under different processing conditions, including type of plasticizer. In particular, it was shown that the lower viscosity attained by epoxidized cardanol acetate plasticized PVC involved an increase of the average pore size of the foam, which was shown to be the main cause of the variation of the specific compressive modulus.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3