Effects of ageing on mechanical properties of stiffened syntactic foam core sandwich composites for marine applications

Author:

Kumar SJ Amith1,Ahmed K Sabeel1

Affiliation:

1. Department of Mechanical Engineering, Jawaharlal Nehru National College of Engineering, Shimoga, Karnataka, India

Abstract

Foam core based sandwich composite materials are extensively used in marine sectors because of its high strength and stiffness to weight ratios. The structural materials used for marine applications should possess good damage tolerance capability. Hence, it is essential that these materials shall be tested for their residual mechanical properties when exposed to marine environment. In the present work, syntactic foam is prepared by uniform mixing of dry fly ash cenosphere and phenolic resin in equal proportions. Syntactic foam is further stiffened by integrating it with honeycomb structure during manufacturing. Sandwich composites are developed with core of syntactic foam (with and without honeycomb structure) and face skins of glass/epoxy composite. Sandwich coupons are prepared in two batches; one being subjected to ageing in natural sea water and other under accelerated environment. Both aged and unaged coupons are subjected to mechanical tests to determine their residual properties under compression, flexure, and low-velocity impact as per ASTM standards. Results showed that the moisture absorption is significant up to about 60 days beyond which it is marginal. The saturation level was attained for an immersion period of about one year, at which the material exhibited significant damage, at the interfacial regions of core-skin, cenosphere-phenolic resin, and fiber-matrix. Ageing of sandwich composites under sea water and accelerated environment has shown detrimental effect on their mechanical properties. However, the extent of degradation in properties due to ageing can be reduced by the incorporation of resin impregnated honeycomb structure in syntactic foam. Microscopic features of aged coupons are also investigated to predict mode of damage due to ageing.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3