Quasi-static indentation damage mechanics of PU foam core reinforced with fly ash particulate

Author:

Pareta Ashish Singh1ORCID,Singh PK1,Sarkar Arnab1,Panda SK1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, India

Abstract

The fly ash (FA) particulates are used in this study to reinforce the polyurethane foam (PUF) core. The FA particles inclusion improves the mechanical performance of the PUF core under compression by increasing its modulus of elasticity. Low-velocity impacts have damage dynamics that are pretty similar to quasi-static indentation. Consequently, the indentation resistance capability of the PUF core is investigated for three types of indenter nose tips with varied FA wt. Percentages (flat-circular, hemispherical, and conical). The results reveal that the reinforced foam core’s resistance varies with reinforcement percentage under indentation. However, FA reinforcement to PUF does not necessarily improve indentation resistance. The damage mechanism of the PUF core under indentation has been evaluated for each type of indenter. The interaction of crushing, shear, and tear of the damaged surface with the change in indenter nose tip has been explained with 0–20% variation of FA particles. Scanning electron microscope (SEM) images are taken for the analysis of the damaged PUF core cross-section at the indented location. Earlier mechanical findings of the scatter in deformation behavior with the indenter nose tip geometry are substantiated by the SEM studies.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rowanberry/vermiculite modified rigid polyurethane foams;Journal of Cellular Plastics;2024-02-10

2. Experimental Investigation of Foreign Object Impact on Polymer-Based Composites Used in Aircraft Structures;2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3