Investigation into the effects of foaming variables on the cellular structure and expansion ratio of foamed TPU using response surface methodology

Author:

Wang Jiankang12ORCID,Fa Houjian1,Lu Hongwei1

Affiliation:

1. Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry and Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China

2. Tianjin DTH Machinery Equipment Co., Ltd., Tianjin, China

Abstract

Thermoplastic polyurethane elastomer (TPU) foams were prepared using the high-pressure autoclave with supercritical fluid carbon dioxide (SC-CO2). The effects of foaming variables (i.e. saturation temperature, saturation pressure, and depressurization rate) on cellular structure and expansion ratio were investigated. The model between expansion ratio and foaming variables was constructed using the Box-Behnken design (BBD) of response surface methodology (RSM), and analysis of variance (ANOVA) was conducted to evaluate the validity and significance of the model. Finally, the interactive effects of foaming variables on the expansion ratio were investigated, and the expansion ratios of maximum and center point from numerical model were verified by experiment. The result showed higher saturation pressure and depressurization rate resulted in the more uniform cellular structure and higher cell density, however the higher saturation temperature resulted in the bigger cell and nonuniform structure. The ranges of average cell diameter and cell density were 15.26–45.4 μm and 0.32 × 108 to 6.24 × 108 cells/cm3, respectively. The model obtained using BBD of RSM was valid to predict the expansion ratio in the design window. The saturation temperature was the most important factor influencing the expansion ratio. With the increase of saturation temperature, the expansion ratio always increases in the design window. The maximum expansion ratio from numerical optimization was 4.91, which was located at saturation temperature 190°C, saturation pressure 12.51 MPa, and depressurization rate 5 MPa/s, and the corresponding experiment value was 4.56. The error between them was 7.13%.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3