A strategy for extending the processing temperature for polypropylene in foam extrusion and its theoretical validation

Author:

He Muzhen1ORCID,Hu Shengfei1

Affiliation:

1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China

Abstract

The quite narrow PP foaming temperature window is the main challenge for continuous extrusion foaming of polypropylene (PP) using supercritical CO2. In this study, high impact polystyrene (HIPS) is added to PP to widen the polypropylene foaming temperature range by reducing the temperature sensitivity of the melt strength of the blend. The behavior of crystalline, dynamic rheology, and extensional rheological of PP/HIPS blends are analyzed. The results show that the crystallinity and crystallization temperature of PP/HIPS blends decreased significantly, the temperature dependence of the blends’ extensional viscosity and melt strength became weaker, and the activation energy of extensional viscosity and melt strength activation energy decreased, while the elastic modulus and viscosity and the system relaxation time increased. It means that the addition of HIPS reduces the crystallinity of PP, improves the cell morphology and to a certain extent overcomes the problem of a sharp decrease in PP melt strength with increasing temperature. The addition of HIPS extends the foaming temperature range of the PP material from 4 K to a maximum of 12 K. Furthermore, we simply estimated the temperature window for extruded foams using the Arrhenius equation. The estimated values have the same trend as the experimental results and are analyzed.

Funder

Hubei Key R&D Program

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3