Compression of polystyrene and polypropylene foams for energy absorption applications: A combined mechanical and microstructural study

Author:

Andena Luca12ORCID,Caimmi Francesco1,Leonardi Lidia1,Nacucchi Michele3,De Pascalis Fabio3

Affiliation:

1. Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘G. Natta,’ Politecnico di Milano, Milano, Italy

2. Engineering, Exercise, Environment, Equipment for Sport (E4Sport) Lab, Politecnico di Milano, Milano, Italy

3. ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Research Centre of Brindisi, Brindisi, Italy

Abstract

In many applications, polymeric foams (such as expanded polystyrene or expanded polypropylene) are used for protection from impacts. Standard design requires the foam to maximize the energy absorption, thus achieving large deformations (typically up to 25% and above in compression) while maintaining the stress level below a threshold value. In this work, steam chest-moulded EPS and EPP were characterized in relation to their density, microstructure and applied strain rate. Typical mechanical parameters (elastic moduli and plateau stress in compression) were compared with existing models and data in the literature. The strain-rate dependence was accurately described using Nagy’s phenomenological model. The mechanical behaviour of the foams was then correlated with their microstructure, as investigated using scanning electron microscopy and X-ray micro-tomography. Structural parameters were obtained using both (2D and 3D) techniques and relevant results were compared.

Funder

Fondazione Cariplo

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3