Consequence of cenosphere loading on hygrothermal, thermal, and mechanical properties of epoxy syntactic foams

Author:

Kaur Mandip1,Jayakumari LS1ORCID

Affiliation:

1. Department of Rubber & Plastics Technology, Anna University, Madras Institute of Technology Campus, Chennai, India

Abstract

Epoxy syntactic foams with different compositions of cenosphere were fabricated and characterised. The effect of loading cenosphere in epoxy syntactic foams was analysed. Good thermal stability of cenosphere–epoxy syntactic foams was established from the thermogravimetric analysis results. The completion of cure reaction at ambient temperature conditions was ascertained from differential scanning calorimetry results. Dynamic mechanical analysis revealed 114°C as the glass transition temperatures ( Tg) for neat epoxy sample, which increased to 132°C with 50% loading of cenosphere. Cenosphere-filled epoxy syntactic foams had low density and low water absorption values when compared to the neat epoxy sample. Homogeneous distribution of the cenosphere particles was confirmed using scanning electron microscopy. The compression studies confirmed brittle failure of the syntactic foams. This was also supported by the scanning electron microscopic images. The incorporation of hollow cenosphere particles led to a decrease in the flexural strength. Syntactic foams with 30% loading of cenosphere exhibited best specific modulus and specific strength. The specific strength increased by 24% for T30 sample and specific modulus increased by 36% for T30 samples when compared to the neat epoxy sample. As the need for strong but lightweight thermally stable products is continually increasing, there is a great possibility for the utilisation of these cenosphere–epoxy syntactic foams as lightweight core for sandwich composites.

Funder

Anna Centenary Research Fellowship

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

Reference24 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3