Foaming behavior of the fluorinated ethylene propylene copolymer assisted with supercritical carbon dioxide

Author:

Jiang Zi-yin1,Zhang Yun-fei1,Gong Chang-jing1,Yao Zhen1,Shukla Abhinaya1,Cao Kun1ORCID

Affiliation:

1. State Key Laboratory of Chemical Engineering, Institute of Polymerization and Polymer Engineering, College of Chemical and Biological Engineering, Zhejiang University

Abstract

Foaming behavior of the fluorinated ethylene propylene copolymer (FEP) and its composites assisted with supercritical carbon dioxide (scCO2) as the blowing agent were investigated. The batch foaming process was applied at temperature ranging from 250°C to 265°C and pressure ranging between 12 MPa and 24 MPa. The optimal foaming temperature and saturation pressure were obtained for both pure FEP and FEP composites with 1 wt% different-sized BaTiO3 as nucleating agent. The cell diameter of pure FEP foam ranging from 80–140 µm was observed while the cell diameter decreased to 20–40 µm after adding BaTiO3 particles. The cell density of foamed FEP with BaTiO3 increased significantly from 106 to 108 cells/cm3 and the expansion ratio ranged between 4.0 and 5.5. Moreover, a decrease in an abnormal phenomenon that expansion ratio for the pure FEP foam was observed as the saturation pressure increased. This unexpected phenomenon can be explained by the relationship between foaming and crystallization coupling processes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

major project of SINOPEC

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3