Do Recent Advances in MR Technologies Contribute to Better Gamma Knife Radiosurgery Treatment Results for Brain Metastases?

Author:

Hayashi M.1,Yamamoto M.2,Nishimura C.3,Satoh H2

Affiliation:

1. Department of Neurosurgery, Toho University Medical Center Ohashi Hospital, Japan

2. Katsuta Hospital Mito GammaHouse; Ibaraki, Japan

3. Department of Medical Informatics, Toho University School of Medicine; Tokio, Japan

Abstract

The detection of intracerebral lesions has improved greatly with advancements in MR imaging, especially the greater sensitivity of the 1.5 Tesla unit versus the older 1.0 Tesla unit. We aimed to determine whether improvements in MR imaging have actually improved diagnostic capabilities and treatment outcomes in gamma knife radiosurgery (GKRS) for brain metastases (METs). Ours was a retrospective study of a consecutive series of 1179 patients (441 females, 738 males, mean age: 63 years, range: 19–92 years) with brain METs who underwent GKRS from 1998 to 2004. Our treatment policy was to irradiate all lesions visible on MR images during a single GKRS session. Mean and median tumor numbers were seven and three (range; 1–74). The 1179 patients were divided into two groups: a 1.0 T-group of 660 patients examined using a 1.0 Tesla MR unit before August, 2002, and a 1.5 T-group of 519 examined using a 1.5 Tesla MR unit after September 2002. In the 1.5 T-group, lesion volumes as small as 0.004 cc were detected with a 5 mm slice thickness. The corresponding lesion size was 0.013 cc in the 1.0 T-group. One or more lesions invisible on a 5 mm slice study were additionally detected on a 2 mm slice study in 47.8% of patients in the 1.0 T-group and 25.2% in the 1.5 T-group (p<.0001). The median survival time (MST) in the 1.5 T-group was significantly longer than that in the 1.0 T-group (8.4 vs. 6.3 months, p=.0004). Due to biases in patient numbers between the two groups, we analyzed subgroups with KPS of 80% or better, no neurological deficits, stable primary tumors, lung cancer, tumor numbers of four or less and tumor volumes of 10.0 cc or smaller. In every subgroup analysis, the MSTs of the 1.5-Tesla group were significantly longer than those of the 1.0-Tesla group. The prognosis of a cancer patient is undoubtedly influenced by multiple factors. Nevertheless, we conclude that application of the 1.5 Tesla MR unit has had a favorable impact on diagnosis and GKRS treatment results in patients with brain METs.

Publisher

SAGE Publications

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3