Magnetic resonance imaging in the diagnosis of white matter signal abnormalities

Author:

Datar Ravi12,Prasad Asuri Narayan1345,Tay Keng Yeow16,Rupar Charles Anthony13578,Ohorodnyk Pavlo6,Miller Michael35,Prasad Chitra135

Affiliation:

1. Schulich School of Medicine and Dentistry, Western University, London, ON, Canada

2. Department of Medical Genetics, London Health Sciences Centre, London, ON, Canada

3. Department of Paediatrics, London Health Sciences Centre, London, ON, Canada

4. Division of Clinical Neurosciences, London Health Sciences Centre, London, ON, Canada

5. Children’s Health Research Institute, London Health Sciences Centre, London, ON, Canada

6. Department of Medical Imaging, London Health Sciences Centre, London, ON, Canada

7. Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada

8. Department of Biochemistry, London Health Sciences Centre, London, ON, Canada

Abstract

Background White matter abnormalities (WMAs) pose a diagnostic challenge when trying to establish etiologic diagnoses. During childhood and adult years, genetic disorders, metabolic disorders and acquired conditions are included in differential diagnoses. To assist clinicians and radiologists, a structured algorithm using cranial magnetic resonance imaging (MRI) has been recommended to aid in establishing working diagnoses that facilitate appropriate biochemical and genetic investigations. This retrospective pilot study investigated the validity and diagnostic utility of this algorithm when applied to white matter signal abnormalities (WMSAs) reported on imaging studies of patients seen in our clinics. Methods The MRI algorithm was applied to 31 patients selected from patients attending the neurometabolic/neurogenetic/metabolic/neurology clinics at a tertiary care hospital. These patients varied in age from 5 months to 79 years old, and were reported to have WMSAs on cranial MRI scans. Twenty-one patients had confirmed WMA diagnoses and 10 patients had non-specific WMA diagnoses (etiology unknown). Two radiologists, blinded to confirmed diagnoses, used clinical abstracts and the WMSAs present on patient MRI scans to classify possible WMA diagnoses utilizing the algorithm. Results The MRI algorithm displayed a sensitivity of 100%, a specificity of 30.0% and a positive predicted value of 74.1%. Cohen’s kappa statistic for inter-radiologist agreement was 0.733, suggesting “good” agreement between radiologists. Conclusions Although a high diagnostic utility was not observed, results suggest that this MRI algorithm has promise as a clinical tool for clinicians and radiologists. We discuss the benefits and limitations of this approach.

Funder

Children's Hospital Foundation, London, ON

Publisher

SAGE Publications

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3