Automated segmentation of ventricular volumes and subarachnoid hemorrhage from computed tomography images: Evaluation of a rule-based pipeline approach

Author:

Butler Mitchell12ORCID,Shah Parin1,Ozgen Burce3,Michals Edward A3,Geraghty Joseph R.4,Testai Fernando D1,Maharathi Biswajit1,Loeb Jeffrey A12

Affiliation:

1. Department of Neurology and Rehabilitation, University of Illinois College of Medicine, Chicago, IL, USA

2. Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA

3. Department of Radiology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA

4. Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA

Abstract

Changes in ventricular size, related to brain edema and hydrocephalus, as well as the extent of hemorrhage are associated with adverse outcomes in patients with subarachnoid hemorrhage (SAH). Frequently, these are measured manually using consecutive non-contrast computed tomography scans. Here, we developed a rule-based approach which incorporates both intensity and spatial normalization and utilizes user-defined thresholds and anatomical templates to segment both lateral ventricle (LV) and SAH blood volumes automatically from CT images. The algorithmic segmentations were evaluated against two expert neuroradiologists on representative slices from 20 admission scans from aneurysmal SAH patients. Previous methods have been developed to automate this time-consuming task, but they lack user feedback and are hard to implement due to large-scale data and complex design processes. Our results using automatic ventricular segmentation aligned well with expert reviewers with a median Dice coefficient of 0.81, AUC of 0.91, sensitivity of 81%, and precision of 84%. Automatic segmentation of SAH blood was most reliable near the base of the brain with a median Dice coefficient of 0.51, an AUC of 0.75, precision of 68%, and sensitivity of 50%. Ultimately, we developed a rule-based method that is easily adaptable through user feedback, generates spatially normalized segmentations that are comparable regardless of brain morphology or acquisition conditions, and automatically segments LV with good overall reliability and basal SAH blood with good precision. Our approach could benefit longitudinal studies in patients with SAH by streamlining assessment of edema and hydrocephalus progression, as well as blood resorption.

Funder

National Heart, Lung, and Blood Institute

Citizens United for Research in Epilepsy

U.S. Army Medical Research and Development Command

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3