Identification of Prognostic Biomarkers for Breast Cancer Metastasis Using Penalized Additive Hazards Regression Model

Author:

Tapak Leili1,Hamidi Omid2,Amini Payam3,Afshar Saeid4,Salimy Siamak5,Dinu Irina6

Affiliation:

1. Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

2. Department of Science, Hamedan University of Technology, Hamedan, Iran

3. Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

4. Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

5. Laboratory of System Biology and Bioinformatics (LBB), Department of Bioinformatics, University of Tehran, Kish, Iran

6. School of Public Health, University of Alberta, Edmonton, AB, Canada

Abstract

Background: Breast cancer (BC) has been reported as one of the most common cancers diagnosed in females throughout the world. Survival rate of BC patients is affected by metastasis. So, exploring its underlying mechanisms and identifying related biomarkers to monitor BC relapse/recurrence using new statistical methods is essential. This study investigated the high-dimensional gene-expression profiles of BC patients using penalized additive hazards regression models. Methods: A publicly available dataset related to the time to metastasis in BC patients (GSE2034) was used. There was information of 22 283 genes expression profiles related to 286 BC patients. Penalized additive hazards regression models with different penalties, including LASSO, SCAD, SICA, MCP and Elastic net were used to identify metastasis related genes. Results: Five regression models with penalties were applied in the additive hazards model and jointly found 9 genes including SNU13, CLINT1, MAPK9, ABCC5, NKX3-1, NCOR2, COL2A1, and ZNF219. According the median of the prognostic index calculated using the regression coefficients of the penalized additive hazards model, the patients were labeled as high/low risk groups. A significant difference was detected in the survival curves of the identified groups. The selected genes were examined using validation data and were significantly associated with the hazard of metastasis. Conclusion: This study showed that MAPK9, NKX3-1, NCOR1, ABCC5, and CD44 are the potential recurrence and metastatic predictors in breast cancer and can be taken into account as candidates for further research in tumorigenesis, invasion, metastasis, and epithelial-mesenchymal transition of breast cancer.

Funder

hamadan university of medical sciences

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3