Understanding the Characteristics of Mass Spectrometry Data through the use of Simulation

Author:

Coombes Kevin R.1,Koomen John M.2,Baggerly Keith A.1,Morris Jeffrey S.1,Kobayashi Ryuji2

Affiliation:

1. Departments of Biostatistics and Applied Mathematics University of Texas M.D. Anderson Cancer Center, Houston TX 77030 USA

2. Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston TX 77030 USA

Abstract

Background Mass spectrometry is actively being used to discover disease-related proteomic patterns in complex mixtures of proteins derived from tissue samples or from easily obtained biological fluids. The potential importance of these clinical applications has made the development of better methods for processing and analyzing the data an active area of research. It is, however, difficult to determine which methods are better without knowing the true biochemical composition of the samples used in the experiments. Methods We developed a mathematical model based on the physics of a simple MALDI-TOF mass spectrometer with time-lag focusing. Using this model, we implemented a statistical simulation of mass spectra. We used the simulation to explore some of the basic operating characteristics of MALDI or SELDI instruments. Results The simulation reproduced several characteristics of actual instruments. We found that the relative mass error is affected by the time discretization of the detector (about 0.01%) and the spread of initial velocities (about 0.1%). The accuracy of calibration based on external standards decays rapidly outside the range spanned by the calibrants. Natural isotope distributions play a major role in broadening peaks associated with individual proteins. The area of a peak is a more accurate measure of its size than the height. Conclusions The model described here is capable of simulating realistic mass spectra. The simulation should become a useful tool for generating spectra where the true inputs are known, allowing researchers to evaluate the performance of new methods for processing and analyzing mass spectra. Availability http://bioinformatics.mdanderson.org/cromwell.html

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3