A transcriptome-Based Deep Neural Network Classifier for Identifying the Site of Origin in Mucinous Cancer

Author:

Ahn Taejin1,Kim Kidong2,Kim Hyojin3,Kim Sarah1,Park Sangick1,Lee Kyoungbun4

Affiliation:

1. Department of Life Science, Handong Global University, Pohang, Republic of Korea

2. Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea

3. Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea

4. Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea

Abstract

Purpose: There is a lack of tools for identifying the site of origin in mucinous cancer. This study aimed to evaluate the performance of a transcriptome-based classifier for identifying the site of origin in mucinous cancer. Materials And Methods: Transcriptomic data of 1878 non-mucinous and 82 mucinous cancer specimens, with 7 sites of origin, namely, the uterine cervix (CESC), colon (COAD), pancreas (PAAD), stomach (STAD), uterine endometrium (UCEC), uterine carcinosarcoma (UCS), and ovary (OV), obtained from The Cancer Genome Atlas, were used as the training and validation sets, respectively. Transcriptomic data of 14 mucinous cancer specimens from a tissue archive were used as the test set. For identifying the site of origin, a set of 100 differentially expressed genes for each site of origin was selected. After removing multiple iterations of the same gene, 427 genes were chosen, and their RNA expression profiles, at each site of origin, were used to train the deep neural network classifier. The performance of the classifier was estimated using the training, validation, and test sets. Results: The accuracy of the model in the training set was 0.998, while that in the validation set was 0.939 (77/82). In the test set which is newly sequenced from a tissue archive, the model showed an accuracy of 0.857 (12/14). t-SNE analysis revealed that samples in the test set were part of the clusters obtained for the training set. Conclusion: Although limited by small sample size, we showed that a transcriptome-based classifier could correctly identify the site of origin of mucinous cancer.

Funder

National Research Foundation of Korea

Seoul National University Bundang Hospital

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ovarian cancer data analysis using deep learning: A systematic review;Engineering Applications of Artificial Intelligence;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3