Robust Distance Measures for kNN Classification of Cancer Data

Author:

Ehsani Rezvan12,Drabløs Finn3ORCID

Affiliation:

1. Department of Mathematics, University of Zabol, Zabol, Iran

2. Department of Bioinformatics, University of Zabol, Zabol, Iran

3. Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway

Abstract

The k-Nearest Neighbor ( kNN) classifier represents a simple and very general approach to classification. Still, the performance of kNN classifiers can often compete with more complex machine-learning algorithms. The core of kNN depends on a “guilt by association” principle where classification is performed by measuring the similarity between a query and a set of training patterns, often computed as distances. The relative performance of kNN classifiers is closely linked to the choice of distance or similarity measure, and it is therefore relevant to investigate the effect of using different distance measures when comparing biomedical data. In this study on classification of cancer data sets, we have used both common and novel distance measures, including the novel distance measures Sobolev and Fisher, and we have evaluated the performance of kNN with these distances on 4 cancer data sets of different type. We find that the performance when using the novel distance measures is comparable to the performance with more well-established measures, in particular for the Sobolev distance. We define a robust ranking of all the distance measures according to overall performance. Several distance measures show robust performance in kNN over several data sets, in particular the Hassanat, Sobolev, and Manhattan measures. Some of the other measures show good performance on selected data sets but seem to be more sensitive to the nature of the classification data. It is therefore important to benchmark distance measures on similar data prior to classification to identify the most suitable measure in each case.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3