A Functional Spatial Analysis Platform for Discovery of Immunological Interactions Predictive of Low-Grade to High-Grade Transition of Pancreatic Intraductal Papillary Mucinous Neoplasms

Author:

Barua Souptik12,Solis Luisa3,Parra Edwin Roger3,Uraoka Naohiro3,Jiang Mei3,Wang Huamin4,Rodriguez-Canales Jaime3,Wistuba Ignacio3,Maitra Anirban4,Sen Subrata3,Rao Arvind125

Affiliation:

1. Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

2. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA

3. Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

4. Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

5. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA

Abstract

Intraductal papillary mucinous neoplasms (IPMNs), critical precursors of the devastating tumor pancreatic ductal adenocarcinoma (PDAC), are poorly understood in the pancreatic cancer community. Researchers have shown that IPMN patients with high-grade dysplasia have a greater risk of subsequent development of PDAC in the remnant pancreas than do patients with low-grade dysplasia. In this study, we built a computational prediction model that encapsulates the spatial cellular interactions in IPMNs that play key roles in the transformation of low-grade IPMN cysts to high-grade cysts en route to PDAC. Using multiplex immunofluorescent images of IPMN cysts, we adopted algorithms from spatial statistics and functional data analysis to create metrics that summarize the spatial interactions in IPMNs. We showed that an ensemble of models learned using these spatial metrics can robustly predict, with high accuracy, (1) the dysplasia grade (low vs high grade) and (2) the risk of a low-grade cyst progressing to a high-grade cyst. We obtained high classification accuracies on both tasks, with areas under the curve of 0.81 (95% confidence interval: 0.71-0.9) for task 1 and 0.81 (95% confidence interval: 0.7-0.94) for task 2. To the best of our knowledge, this is the first application of an ensemble machine learning approach for discovering critical cellular spatial interactions in IPMNs using imaging data. We envision that our work can be used as a risk assessment tool for patients diagnosed with IPMNs and facilitate greater understanding and investigation of the cellular interactions that cause transition of IPMNs to PDAC.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3