A Bayesian Gene-Based Genome-Wide Association Study Analysis of Osteosarcoma Trio Data Using a Hierarchically Structured Prior

Author:

Yang Yi1,Basu Saonli1,Mirabello Lisa2,Spector Logan3,Zhang Lin1

Affiliation:

1. Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA

2. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

3. Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA

Abstract

Osteosarcoma is considered to be the most common primary malignant bone cancer among children and young adults. Previous studies suggest growth spurts and height to be risk factors for osteosarcoma. However, studies on the genetic cause are still limited given the rare occurrence of the disease. In this study, we investigated in a family trio data set that is composed of 209 patients and their unaffected parents and conducted a genome-wide association study (GWAS) to identify genetic risk factors for osteosarcoma. We performed a Bayesian gene-based GWAS based on the single-nucleotide polymorphism (SNP)-level summary statistics obtained from a likelihood ratio test of the trio data, which uses a hierarchically structured prior that incorporates the SNP-gene hierarchical structure. The Bayesian approach has higher power than SNP-level GWAS analysis due to the reduced number of tests and is robust by accounting for the correlations between SNPs so that it borrows information across SNPs within a gene. We identified 217 genes that achieved genome-wide significance. Ingenuity pathway analysis of the gene set indicated that osteosarcoma is potentially related to TP53, estrogen receptor signaling, xenobiotic metabolism signaling, and RANK signaling in osteoclasts.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3