Phenotype Classification Using Moment Features of Single-Cell Data

Author:

Sima Chao1,Hua Jianping1,Bittner Michael L2,Kim Seungchan3,Dougherty Edward R4

Affiliation:

1. Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, College Station, TX, USA

2. Computational Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA

3. Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX, USA

4. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA

Abstract

Features for standard expression microarray and RNA-Seq classification are expression averages over collections of cells. Single cell provides expression measurements for individual cells in a collection of cells from a particular tissue sample. Hence, it can yield feature vectors consisting of higher order and mixed moments. This article demonstrates the advantage of using these expression moments in cancer-related classification. We use synthetic data generated from 2 real networks, the mammalian cell cycle network and a melanoma-related pathway network, and real single-cell data generated via fluorescent protein reporters from 2 cell lines, HT-29 and HCT-116. The networks consist of hidden binary regulatory networks with Gaussian observations. The steady-state distributions of both the original and mutated networks are found, and data are drawn from these for moment-based classification using the mean, variance, skewness, and mixed moments. For the real data, we only observe 1 gene at a time, so that only the mean, variance, and skewness are considered, the analysis being done for 2 genes, EGFR and ERRB2. For the synthetic data, classification improves as we move from just the mean to mean, variance, and skewness and then to these plus the mixed moments. Comparisons are done with 3, 4, or 5 features, using feature selection. Sample size effects are considered. For the real data, we only consider mean, variance, and skewness, with results improving when the higher order moments are used as features.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3