Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships

Author:

Bakhtiari Shahab1,Sulaimany Sadegh2ORCID,Talebi Mehrdad3,Kalhor Kabmiz1

Affiliation:

1. Department of Biological Sciences, University of Kurdistan, Sanandaj, Iran

2. Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran

3. Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Genetic variations such as single nucleotide polymorphisms (SNPs) can cause susceptibility to cancer. Although thousands of genetic variants have been identified to be associated with different cancers, the molecular mechanisms of cancer remain unknown. There is not a particular dataset of relationships between cancer and SNPs, as a bipartite network, for computational analysis and prediction. Link prediction as a computational graph analysis method can help us to gain new insight into the network. In this article, after creating a network between cancer and SNPs using SNPedia and Cancer Research UK databases, we evaluated the computational link prediction methods to foresee new SNP-Cancer relationships. Results show that among the popular scoring methods based on network topology, for relation prediction, the preferential attachment (PA) algorithm is the most robust method according to computational and experimental evidence, and some of its computational predictions are corroborated in recent publications. According to the PA predictions, rs1801394-Non-small cell lung cancer, rs4880-Non-small cell lung cancer, and rs1805794-Colorectal cancer are some of the best probable SNP-Cancer associations that have not yet been mentioned in any published article, and they are the most probable candidates for additional laboratory and validation studies. Also, it is feasible to improve the predicting algorithms to produce new predictions in the future.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3