A status of guinea fowl (Numida meleagris) and pheasant (Phasianus colchicus) population transferred from wildlife to the breeding assessed based on the histone H1.c’ polymorphic variation

Author:

Kowalski Andrzej1

Affiliation:

1. Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski University in Kielce, Kielce, Poland

Abstract

The genetic changes accompanying a relocation of population to the captivity are mostly adverse and usually associated with deterioration of its status. These alterations are greater in small populations in which a loss of genetic variation limits the capability to adaptation. In this work, a status of small-sized guinea fowl and pheasant population relocated to the breeding is presented. These populations were analyzed based on the polymorphism of histone H1.c’, the protein for the first time identified as a heterogeneous. Histone H1.c’ was resolved in the two-dimensional polyacrylamide gel into the isoform H1.c’1 and H1.c’2, so its heterogeneity corresponds to the presence of homozygous phenotypes c’1 and c’2. Because no histone H1.c’ heterozygous phenotype was found, a significant phenotypic diversity in the guinea fowl ( P = 0.023) and pheasant ( P = 0.018) population was detected, together with its departures from Hardy-Weinberg equilibrium ( P < 0.0001). Both populations characterize an extreme loss of genetic diversity due to complete inbreeding ( F = 1) and an impact of genetic drift which, according to the expected values for guinea fowl (0.192) and pheasant (0.182) population, may strongly diminish allele frequency in the following generations. Thus, condition of populations evaluated based on the histone H1.c’ polymorphic variants, recognized as reasonable informative genetic markers (polymorphism information content of guinea fowl = 0.4 and pheasant = 0.38), corresponds to reduction of genetic variability caused by inbreeding and genetic drift. Therefore, it seems that rearing in the captivity can bring negative effects that favor restriction of animals’ vitality and survival of the population.

Publisher

SAGE Publications

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3