Thermal Degradation of Polyurethane Bicomponent Systems in Controlled Atmospheres

Author:

Ketata N.1,Sanglar C.1,Waton H.1,Alamercery S.1,Delolme F.1,Raffin G.1,Grenier-Loustalot M.F.1

Affiliation:

1. Service Central d'Analyse, USR 059 – CNRS, Echangeur de Solaize, BP 22, 69390 Vernaison, France

Abstract

Although the thermal degradation of polyurethanes has been extensively studied in the past, the use of a panoply of recent analytical techniques has provided more detailed data and enabled us to confirm prior findings on the thermal degradation of bicomponent polyurethanes. The thermal behaviour of bicomponent polyurethanes in conditions of controlled atmosphere and temperature was characterized by determining their heat stability by on-line TGA/FT-IR coupling and off-line TGA/TCT/GC/MS coupling in order to identify the volatile compounds released. Degradation residues were analyzed by FT-IR and MALDI-TOF (matrix assisted laser desorption/ionization coupled with time-of-flight) mass spectrometry. A major drawback of these thermoplastic elastomers is that one of the components, isocyanate, is toxic. Based on the data obtained with model urethane compounds ( p-TI-based) and bicomponent polyurethane polymer (MDI- and PEG-based), we show that the thermal degradations are different. The widespread application of these materials exposes them to extreme working conditions, which is why we propose reaction mechanisms for their degradation.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3