Hydrothermal Ageing of GF/PP Composites: When Glass/Polymer Adhesion Favours Water Entrapment

Author:

Larivière D.1,Krawczak P.1,Tibéri C.2,Lucas P.2

Affiliation:

1. Ecole des Mines de Douai, Polymers & Composites Technology Department, 941 rue Charles Bourseul, B.P. 838, 59508 Douai Cedex, France

2. Saint-Gobain Vetrotex International, 767 Quai des Allobroges, B.P. 929, 73009 Chambery, France

Abstract

This study aims to assess the effects of ageing in boiling water on the transverse tensile mechanical properties of unidirectional commingled GF/PP composites, as well as the influence of the fibre/matrix adhesion on the water absorption and desorption mechanisms. For this purpose, different interfacial qualities were obtained by a modification of the fibre reinforcement sizing (polypropylene specific sizing, or no sizing), and of the matrix (with or without coupling agent). A very good retention of the mechanical properties was observed for those composites which had been treated so as to improve the fibre/matrix adhesion. It is also shown that the better the adhesion, the longer the water remained inside the composite material. This induced effect appears to be the counterpart of the protecting role against moisture of a strong interface. The interfacial interactions act as barriers both during absorption and during desorption. This leads to water molecule entrapment. Hence, the persistence of water trapped at the interfaces in the case of sized glass fibres composites leads us to recommend investigations on the long term effects on longitudinal tension properties, since the effects of zero-stress ageing are known to reduce fibre strength.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Reference28 articles.

1. Opportunities in continuous fibre reinforced thermoplastic composites 2003-2008, 240 pages, E-Composites Inc. (June 2003).

2. Effect of interfacial properties and weave structure on mode I interlaminar fracture behaviour of glass satin woven fabric composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3