Affiliation:
1. Department of Physics and Electronics, CHRIST (Deemed to be University), Bengaluru, India
Abstract
Development of polymers with excellent dielectric properties is a challenge for advanced electronic devices. Impregnating conducting fillers like carbon nanoparticles can enhance the dielectric constant, retaining low loss due to its compatibility and favorable polarization within the polymer matrix. The multifunctional characteristics of coal-derived nanocarbon can improve permittivity and facilitate large-scale production at a lower cost. The incorporation of coal-based nanocarbon in the polymer matrix and its dielectric response is seldom investigated. In this work, different ratios (10:90, 50:50, 90:10 by weight) of nanocarbon/PVDF composite are prepared via a simple solution casting technique. The dielectric measurements show that nanofillers’ addition significantly augments the dielectric constant value, which is ∼3 times (50:50 composite) higher than pure PVDF. The uniform distribution of 50% filler within the polymer matrix impeded the seepage of charge at the interface and enhanced the permittivity via polarization of accumulated charges. The composite also exhibited balanced dielectric loss that is essential for energy storage applications.
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献