Processing, thermal and mechanical properties of composite laminates with natural fibers prepregs

Author:

Libera Junior Vilson Dalla12ORCID,Teixeira Linconl Araujo1,Amico Sandro Campos3ORCID,Maria da Luz Sandra4

Affiliation:

1. Graduate Program in Mechanical Sciences, University of Brasília (UnB), Brasília, Brazil

2. Department of Civil Engineering, Evangelical University of Goiás (UniEVANGELICA), Ceres, Brazil

3. Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

4. Department of Automotive Engineering, University of Brasília (UnB), Brasília, Brazil

Abstract

This work manufactured prepregs by impregnating discontinuous curaua fibers with B-stage epoxy resin. The prepreg layers were then stacked to produce laminates by hot compression. Alkaline treatments were previously applied to the curaua fibers to improve their interface with the polymer matrix. Then, the prepregs and the final composites were studied regarding their thermal, dynamic mechanical, mechanical, and morphological behavior. The treatments promoted defibrillation by removing lignin and hemicellulose from the fibers, which allowed better impregnation of the treated fibers with epoxy resin. In general, laminates that used treated fibers exhibited the largest storage modulus in the glassy region. The mechanical results showed the laminates produced with treated fibers prepregs presented a highest tensile and flexural resistance than those manufactured with untreated fibers and neat epoxy resin. The NaOH-treated curaua/epoxy laminate exhibited high tensile strength (56.2 MPa) and modulus (3.3 GPa). Overall, fracture morphology indicated better fiber adhesion for the treated fiber composites. The results demonstrate that natural fibers prepregs can be successfully produced and present proper physical and mechanical behavior in components.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Decanato de Pós Graduação

Fundação de Apoio à Pesquisa do Distrito Federal

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3