Microencapsulated healing agents for an elevated-temperature cured epoxy: Influence of viscosity on healing efficiency

Author:

Ghazali Habibah1ORCID,Ye Lin2,Amir Amie N3

Affiliation:

1. Centre of Advanced Composites Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru, Malaysia

2. Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia

3. School of Mechanical Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia

Abstract

Among many applications, elevated-temperature cured epoxy resins are widely used for high-performance applications especially for structural adhesive and as a matrix for structural composites. This is due to their superior chemical and mechanical properties. The thermosetting nature of epoxy produces a highly cross-linked polymer network during the curing process where the resulting material exhibited excellent properties. However, due to this cross-linked molecular structure, epoxies are also known to be brittle, and once a crack initiated in the material, it is difficult to arrest the crack propagation. Earlier research found that the inclusion of encapsulated healing agents is able to introduce self-healing ability to the room-temperature cured epoxies. The current study investigated the self-healing behaviour of an elevated-temperature cured epoxy, which incorporated the dual-capsule system loaded with diglycidyl-ether of bisphenol-A (DGEBA) resin and mercaptan. The microcapsules were prepared by the in-situ polymerisation method while the fracture toughness and the self-healing capability of the tapered-double-cantilever-beam (TDCB) epoxy specimens were measured under Mode-I fracture toughness testing. We investigated the effect of temperature on viscosity of the healing agents and how these values influence the formation of uniform healing on the fracture surfaces. It was found that incorporation of the dual-capsule self-healing system onto an elevated-temperature cured epoxy slightly changed the fracture toughness of the epoxy as indicated by the Mode-I testing. In the case of thermal healing at 70°C, the self-healing epoxy exhibited a recovery of up to 111% of its original fracture toughness, where a uniform spreading of the healant was observed. The excellent healing behaviour is attributed to the lower viscosity of the healant at higher temperature and the higher glass transition temperature ( Tg) of the produced healant film. The DSC analysis confirmed that the healing process was not contributed by the post-curing of the host epoxy.

Funder

Universiti Teknologi Malaysia

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3