Affiliation:
1. Tomas Bata University in Zlin, Faculty of Technology, TGM 275, 762 72 Zlin, Czech Republic
2. National Institute of Advanced Industrial Science and Technology, Japan
Abstract
Both polypropylene (PP) and polyethylene terephthalate (PET) constitute a significant portion of post-consumer waste. To improve the recycling of immiscible PP/PET blends, a compatibiliser should be utilised. The steady shear flow properties of unmodified and modified PP/PET blends having up to 50 wt.% PET were investigated and compared in this study. Three types of PPs with different flow properties were used to ascertain the influence of the matrix on the blend's rheology. The effect of modification on the rheological properties was evaluated in two ways - firstly, the addition of 1 wt.% of maleic anhydride (MA), and secondly, the use of already modified polypropylene. According to the morphological observations, an improvement in compatibility was found in both cases. The shear viscosity and the first normal stress difference were measured using a rotational cone and plate rheometer at 265°C (when both PET and PP are molten), and 245°C (when only PP has melted). Completely different behaviour was observed under these two temperature conditions. At 265°C, the shear viscosity decreases with PET content in the blend, while at 245°C it increases, thus recalling the behaviour of particle-filled systems. The addition of maleic anhydride affects the shear viscosity in various ways; a decrease, an increase, and some almost unchanged values were obtained. Concerning the first normal stress difference, an even more complex situation occurs, and the effect of modification by MA is also ambiguous. Furthermore, the deviations from the log-additivity rule were evaluated in terms of the shear viscosity and the first normal stress difference. From the results, it can be supposed that PP-X/PET samples were compatibilised successfully, and strong interphase interactions could be expected. Finally, the yield values of shear stress determined at 245°C showed a generally increasing tendency with increasing PET content.
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献