A review on the enhancement of composite’s interface properties through biological treatment of natural fibre/lignocellulosic material

Author:

Boey Jet Yin1ORCID,Yusoff Siti Baidurah1ORCID,Tay Guan Seng1ORCID

Affiliation:

1. School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia

Abstract

Natural fibre or lignocellulosic fibres have aroused the attention of scientists in the polymer industry, given their eco-friendly, low density, and biodegradability. Nevertheless, the major obstacle to wide commercial applications is the incompatibility between polar natural plant fibres with non-polar polymer matrix due to different chemical constitutions. Therefore, surface treatment of natural fibres before they are implemented to prepare fibre-reinforced composites is considered. Chemical and physical treatments are not preferred as it involves hazardous chemicals and high energy consumption. This review article provides an overview of various environmentally friendly approaches, such as introducing bacterial nanocellulose, pre-treatment with bacterial cellulase, fungal treatment, and enzymatic treatments aimed to treat natural fibres. The implications of working mechanisms on the characteristics of fibre itself and polymer composites with reinforcement are reviewed. The application of treated fibres reinforced composites and comparison of biological treatment with other treatments are discussed in this article. It is evidenced that fibre that undergoes biological modifications facilitates better fibre-matrix interfacial adhesion, has stronger mechanical bonding with the matrix, along with the reduction of water uptake of the composites.

Funder

Universiti Sains Malaysia

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3