Numerical and Experimental Analysis of the Tensile and Bending Behaviour of CFRP Cables

Author:

de Menezes Eduardo Antonio Wink1,da Silva Laís Vasconcelos1,Junior Carlos Alberto Cimini2,Luz Felipe Ferreira1,Amico Sandro Campos1

Affiliation:

1. PPGE3M, Federal University of Rio Grande do Sul, Porto Alegre/RS, Av. Bento Gonçalves, 9500, Agronomia, Porto Alegre/RS, 90050-170, Brazil

2. Department of Structural Engineering, Federal University of Minas Gerais, Av Antônio Carlos, 6627, Pampulha, Belo Horizonte/MG, 31270-901, Brazil

Abstract

Due to their high fatigue life, specific strength and specific stiffness in comparison with steel, carbon-fibre reinforced polymer (CFRP) cables have attracted the infrastructure industry interest in recent years, primarily for use as structural tendons. Particularly the oil and gas industry showed interest for application in offshore platform anchorage systems, because of their exceptional corrosion and creep/relaxation behaviour. In such applications, the cables need to be tensioned in service and to be bent around relatively small-diameter spools for transportation and maintenance. Therefore, their tensile and bending behaviour is a subject of great concern. The aim of this work was to perform a test program on 1 × 19 CFRP cables in two different situations: tensile loading and four-point bending loading. Finite element models were developed to simulate both conditions, including frictional contact between the cable wires. A simplified analytical model was also used to predict the cable behaviour in tension. Numerical predictions were compared to experimental data showing relatively good accuracy, unlike the verified analytical model. CFRP cables presented outstanding tensile behaviour, but bending over small radius spools could not reach the performance of steel wire ropes. Furthermore, simulation could only fairly predict bending below strains of μ1,000 μe for the external rods, beyond which the cable presented highly non-linear behaviour that could not be simulated by the numerical model.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3