Studies on mechanical properties, dielectric behavior and DC conductivity of neodymium oxide/poly (butyl methacrylate) nanocomposites

Author:

Suhailath K1,Thomas Meenu2,Ramesan MT1ORCID

Affiliation:

1. Department of Chemistry, University of Calicut, Kerala, India.

2. Department of Physics, University of Calicut, Kerala, India

Abstract

The current article aims to develop poly (butyl methacrylate) (PBMA) nanocomposites with enhanced electrical and mechanical properties by incorporating neodymium oxide (Nd2O3) nanoparticles between the PBMA chains. The morphological, thermal and structural profiles of the PBMA nanocomposites reinforced with different loading of Nd2O3 nanoparticles were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The SEM images revealed that the morphology of the PBMA was significantly influenced by the insertion of Nd2O3. The uniform dispersion of Nd2O3 in the polymer composite was visible at 5 wt% loading of nano-filler. The main crystalline peaks of Nd2O3 nanoparticles in the amorphous PBMA structure were revealed by the X-ray diffraction analysis. The thermal stability of PBMA was greatly enhanced by the dispersion of Nd2O3 in the PBMA matrix. The tensile strength and elongation at break of the composites were measured and both results showed the enhanced mechanical properties of PBMA due to the reinforcement of Nd2O3 nanoparticles. The various parameters affecting the increased tensile strength of composite by the incorporation of nanoparticles were studied by different theoretical modeling. The electrical properties such as dielectric constant and the dielectric loss tangent (tan δ) of PBMA nanocomposites were enhanced with the addition of nanoparticles. Also, the DC conductivity of polymer composites was estimated and the applicability of different theoretical models for predicting the conductivity properties of PBMA/Nd2O3 nanocomposites were examined.

Funder

Kerala State Council for Science, Technology and Environment

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3