Influence of structural modification on the properties of poly(amide–imide)s

Author:

Wang Yanbin1,Yu Huang1,Lu Guangming1,Luo Zhonglin1,Shao Ningning1,Cao Meng1,Wang Biaobing1

Affiliation:

1. Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, People’s Republic of China

Abstract

In this study, the influence of length of flexible groups on the properties of poly(amide–imide)s (PAIs), three-model polymers (poly(amide–imide)-4-aminobutyric acid, poly(amide–imide)-6-aminocaproic acid, and poly(amide–imide)-11-aminoundecanoic acid) possessing different flexible methylene units ((CH2)3, (CH2)5, and (CH2)10) in the main chain were designed. With increasing the number of methylene units, it is found that the tensile strength of PAIs decreased from 75 MPa to 55 MPa; meanwhile, the elongation at break increased from 6% to 15%. On the other hand, the glass transition temperature decreased from 207°C to 112°C; fortunately, the starting decomposition temperature kept almost same with a high point around 400°C. Furthermore, the PAI with (CH2)10unit in the main chain is a semicrystalline polymer, while the one with (CH2)5or (CH2)3unit is an amorphous material. In other words, the length of the flexible chain in the polymer backbone not only plays an important role in mechanical and thermal performances but also affects their phase transition. These findings highlight the important role of structural modification in high-performance polymers and may help in the further development of novel PAIs for their potential applications in advanced technology.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3