Affiliation:
1. Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
Abstract
In this study, the influence of length of flexible groups on the properties of poly(amide–imide)s (PAIs), three-model polymers (poly(amide–imide)-4-aminobutyric acid, poly(amide–imide)-6-aminocaproic acid, and poly(amide–imide)-11-aminoundecanoic acid) possessing different flexible methylene units ((CH2)3, (CH2)5, and (CH2)10) in the main chain were designed. With increasing the number of methylene units, it is found that the tensile strength of PAIs decreased from 75 MPa to 55 MPa; meanwhile, the elongation at break increased from 6% to 15%. On the other hand, the glass transition temperature decreased from 207°C to 112°C; fortunately, the starting decomposition temperature kept almost same with a high point around 400°C. Furthermore, the PAI with (CH2)10unit in the main chain is a semicrystalline polymer, while the one with (CH2)5or (CH2)3unit is an amorphous material. In other words, the length of the flexible chain in the polymer backbone not only plays an important role in mechanical and thermal performances but also affects their phase transition. These findings highlight the important role of structural modification in high-performance polymers and may help in the further development of novel PAIs for their potential applications in advanced technology.
Funder
Natural Science Foundation of Jiangsu Province
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献