Effect of chain segment length on crystallization behaviors of poly(l-lactide-b-ethylene glycol-b-l-lactide) triblock copolymer

Author:

Gong Yongji1,Song Weihua1,Wu Yifan2,Zhang Daohai13,Liu Yufei1,Zhao Qian1,He Min13,Chen Xiaolang24

Affiliation:

1. College of Materials and Metallurgy, Guizhou University, Guiyang, China

2. Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China

3. National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang, China

4. The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China

Abstract

The poly(l-lactide-b-ethylene glycol-b-l-lactide) (PLLA-PEG-PLLA) triblock copolymers with different chain segment length are fabricated by ring-opening polymerization. The structure, molecular weight, and crystallization behaviors of the triblock copolymers are characterized by Fourier transform infrared, nuclear magnetic resonance spectroscopy, gel permeation in chromatography, X-ray diffraction, differential scanning calorimetry, and polarizing optical microscopy (POM). The results show that the increase of block length is beneficial to improve its crystallization. In addition, the triblock copolymer exhibits a double crystallization phenomenon. The POM results indicate that PEG and PLLA chains of the copolymer crystallize in their respective crystallization temperature regions. The growth rate of the PLLA spherocrystal decreases and the dendritic spherocrystals appear with increasing the PEG chain length when the PLLA chain of the copolymer is isothermal crystallized at 80°C and PLLA chain length is constant. The growth rate of the PEG spherocrystal decreases and the spherocrystal morphology changes little with increasing PLLA chain length when the PEG chain is isothermal crystallized at 25°C and the length of PEG chain remained unchanged.

Funder

Opening Project of State Key Laboratory of Polymer Materials Engineering

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3