Pull Speed Influence on Fiber Compaction and Wetout in Tapered Resin Injection Pultrusion Manufacturing

Author:

Masuram N.B.12,Roux J.A.13,Jeswani A.L.14

Affiliation:

1. University of Mississippi, University, MS 38677 USA

2. Graduate Student

3. Faculty

4. Principal Engineer, Osram Sylvania

Abstract

In the resin injection pultrusion process (RIP), liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout continuously pulled fibers. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline, causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus at low resin injection pressures, the resin cannot effectively penetrate through the fibers to achieve complete wetout. However, if the resin injection pressure is too high, the fibers are squeezed together to such an extent that even greater injection pressure is necessary to wetout the compacted fibers. The design of the injection chamber significantly affects the minimum injection pressure required to wetout the fiber reinforcements. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber pull speed on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3