Mechanical behavior simulation: NCF/epoxy composite processed by RTM

Author:

Monticeli Francisco Maciel1,Daou David2,Dinulović Mirko2,Voorwald Herman Jacobus Cornelis1,Cioffi Maria Odila Hilário1

Affiliation:

1. Department of Materials and Technology, Fatigue and Aeronautic Materials Research Group, School of Engineering, São Paulo State University (Unesp), Guaratinguetá, Brazil

2. Department of Aerospace Engineering, Faculty of Mechanical Engineering (FEM), University of Belgrade, Beograd, Serbia

Abstract

Considering aeronautics requirements, academies and industries are developing matrixes and reinforcements with higher mechanical performance. The same occurs with the process where new studies focus on obtaining composites with suitable matrix/reinforcement interface. The use of epoxy resin and carbon fiber with high mechanical performance does not guarantee a composite with high mechanical properties, considering imperfections and void formation along the laminate in case of inappropriate processing parameters. The aim of this article was to analyze and quantify the mechanical behavior of polymer composite reinforced with continuous fibers using finite element methodology and postprocessing software simulation. In addition, the classical laminate theory and finite elements were used to simulate flexural and tensile tests of composite specimens. Simulation results were compared with experimental test results using a carbon fiber noncrimp fabric quadriaxial/epoxy resin composite processed by resin transfer molding. Although void volume fraction for structural materials presenting results under aeronautics requirements regarding of 2%, imperfections like lack of resin and impregnation discontinuity showed an influence in tensile and flexural experimental results. Experimental mechanical behavior decreased 10% of strength, in comparison with simulation results due to imperfection on impregnation measured by C-Scan map. Improvement in processing procedures could able to provide greater impregnation continuity, reducing defect formation and ensuring better matrix/reinforcement interface. As a final conclusion, the process plays a role as important as the characteristics of reinforcement and matrix and, consequently, the mechanical properties.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3